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Introduction

The sun is bright and magnificent. It quite
literally sustains all life on Earth. Yet spread thin, its rays
offer little direct use to humans. Sure, they aid with
Vitamin D, Circadian rhythm, and lifting spirits, but only
when focused do they gain serious workable power. Pull
out a magnifying glass on a sunny day and you can
generate substantial heat, boil water, and even behold
fire.

It is no secret that, much like the sun’s rays, we
humans are far more powerful when focused. Research,
experience, and common sense all indicate that when
time and energy are sharply devoted to a task—rather
than scattered around listlessly—it infallibly gets
completed with unrivaled speed and quality.

Focus, being as vital as it is, has unsurprisingly come under siege in the Age of Information.
Attention is practically commoditized by tech giants like Facebook and Tik Tok. The driving metric for a
modern advertisement is how long it stays in your head. Clickbait is nearly indistinguishable from
content. Almost every day the forecast calls for a storm of headlines, notifications, messages, and
countless other distractions. And all of this is compounded by the online environment of the Covid-19
pandemic. The odds certainly seem stacked against you, at least until you wield a weapon of defense.

Introducing the HourCache: a user-friendly productivity tool that intuitively tracks where your
hours are going! When placed on a particular side, the cube-shaped embedded system records your time
spent on a corresponding, user-defined activity. This data is then synthesized and can be reviewed on our
website. While the HourCache is rather simple in concept, it offers a powerful framework for time
management if used diligently. It is no silver bullet, but to those who take seriously the daily challenge of
keeping their concentration intact, the HourCache can offer a hand.

Original Goals

The HourCache is meant to be a small and simple device that can be used to track your daily
productivity or lack thereof. The design was an octahedron with 7 different states or activities that you
could keep track of with the 8th side being an idle charging side. Simply flipping the HourCache to have
another task facing up while doing this task would be enough to track different tasks and the total time
spent each day. The data would be communicated to the user through wireless communication via wifi
and can be visualized on any device.

When formulating the original plans, we had a few best alternatives so that during testing we
would be able to see which alternative would be the best for the specific tasks we desired to perform.
Ultimately, we converged on an ESP32 as our microcontroller as it has a faster clock speed, built-in wifi
capabilities, more flash memory, and SRAM compared to the Arduino. For the orientation detection, we
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converged on using the ADXL345 accelerometer chip. And we decided on wifi communication by using
the user’s own IP address and wifi service to host a temporary webpage that holds the time information on
the different states.

Divergence from the Proposal

Number of Sides
Our original design was to have the HourCache in the shape of a regular octahedron, an

eight-sided platonic solid. Upon closer consideration, we decided that this shape was unnecessarily
complex and difficult to print. We opted for a cube instead for ease of manufacture, ease of assembly, and
the fact that all the rectilinear components can easily be fit inside.

Side Detection
In our proposal [1], we had two options for side detection to choose from.
The first option was to place a pressure pad on each side of the HourCache and connect these to

the microcontroller using 6 GPIO pins. This solution would thus require 6 components, increasing the
cost and hardware complexity. The one advantage was robust, one-hot measurements from which the side
could easily be determined.

The second option was using an accelerometer to measure the forces acting on the device, and
this is what we ended up choosing. This option only requires one component which can be placed inside
the device, greatly reducing the cost and hardware complexity. In addition, through preliminary tests, it
was found that the current side could in fact be decided robustly.

Microcontroller

At the time of our proposal, we were deciding between two options for microcontrollers, the
Arduino MKR1010, and the ESP32. For our final design, we settled on the latter, for a number of reasons.
Making use of the framework outlined in lecture 13:

Step 1: Specify task.

a. Inputs:
i. Readings from a sensor for side detection.
ii. An external clock.

b. Output:
i. Time data for each side to be displayed on a webpage.

c. Functional goals:
i. To compute the states the HourCache is in.
ii. Measure the time spent in each state.
iii. Store this time data.
iv. Robustly send this data to a webpage.
v. Minimize power consumption.
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Step 2: Refine the specification of each output & select the output device.
2. The time data will be output over Wi-Fi in the form of an HTTP request.~
3. The information will be put online and thus the only required output device is a computer

to run the web server, which can be any computer, local or cloud-based.

Step 3: Determine & specify the control requirements for each selected output device.
a. No control requirements are needed for the output device.

Step 4: Specify each input and select physical devices.
b. Select the ADXL345 accelerometer to input state data. The ADXL345 sends 3 floats

representing the measured forces along its 3 axes. This data is sent using the I2C protocol.
c. Select the DS3231 Real Time Clock (RTC) module. This module sends data using the I2C

protocol.

Step 5: Determine and specify the I/O requirements for each device.
d. The only I/O requirements are I2C compatibility and a WiFi module to enable all of the

input/output devices to work properly.

Step 6: Specify program-based requirements.
e. The microcontroller should have a user-friendly programming language and interface.
f. More available memory is preferred.
g. Low power consumption, or the ability to save power, is preferred.

With the above requirements in mind, we examined our two options. The two microcontrollers
both have I2C compatibility, but only the ESP32 has a built-in WiFi module. Both devices have similar
user interfaces. The ESP32 stands apart with its impressive computational power and 4MB of flash
memory over the Arduino’s 32kB. Lastly, the ESP32 has a sleep mode to save power which the Arduino
does not. For the above reasons, we selected the ESP32 over the Arduino.

Final Design

Hardware Choices

Microcontroller

With the above requirements in mind, we examined our two microcontroller options. The two
microcontrollers both have I2C compatibility, but only the ESP32 has a built-in WiFi module. Both
devices have similar user interfaces. The ESP32 stands apart with its impressive computational power and
4MB of flash memory over the Arduino’s 32kB [2][3]. Lastly, the ESP32 has a sleep mode to save power
which the Arduino does not. For the above reasons, we selected the ESP32 over the Arduino. We chose
the TTGO LoRa ESP32 as it also includes a charging circuit for the battery, and allows us to directly
connect a LiPo battery without the need for any additional circuitry.
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Orientation Detection:

Among the two alternatives, accelerometer and pressure pads, listed in the project proposal [1] for
determining Hour Cache’s orientation, we end up choosing the accelerometer in our final design. There
are 3 main advantages, 1. lighter communication loads 2. smaller space occupation, and 3. ability to
interrupt in sleep mode. By using an accelerometer we achieve orientation detection with 5 wires (Vcc,
GND, SDA, SCL, interrupt_output) using I2C protocol, which is much less comparing using 6 pressure
pads with 18 wires (6 * (Vcc + GND + reading)). Besides the advantages of the accelerometer taking
smaller physical space, it can also issue interrupts to wake up our microcontroller from sleep mode to
achieve a better power consumption optimization, which will be discussed later.

Interrupt Trigger:

Instead of the motion detection sensor, we end up choosing the accelerometer as an interrupt
trigger to wake up the ESP32 from sleep mode. The ADXL345 features activity interrupts, where if a
detected acceleration event is above a certain threshold from a starting value, it can set one if its interrupt
pins to HIGH.

Electrical and Mechanical Design:
In terms of Mechanical design, our objectives were to create a simple and uncluttered exterior for

the HourCache that still allowed for repairability and modification. As a result, we went with a “sliding
tray” design, designed in Solidworks and 3D printed using PETG. Each component was placed in order to
balance the weight of the cube on each axis as best as possible. Furthermore, the modularity of each
component allowed for easier debugging.

Figure 1: Solidworks CAD (Left) and Tray Design (Right)

For the electrical design, our entire system is powered using a rechargeable 3.7V 680mAh LiPo
battery. This battery is connected directly to the battery connector on the ESP, which has a built in
charging circuit allowing for charging over the board’s USB-C connector. The RTC and Accelerometer
are then connected to the ESP using a solderable breadboard. SDA and SCL for both are connected to the
default pins on the ESP, 21 and 22 respectively, while the interrupt_1 pin from the accelerometer is

4



connected to Pin 15. Additionally, VCC is connected to CS on the accelerometer to enable I2C
communication.

Figure 2: Electrical Wiring Diagram

Communications Protocols:
I2C was used in order to communicate between the RTC and the Accelerometer. The “Physical”

implementation of I2C was done using the default Wire.h library. Wire.beginTransmission(addr) would
send the start flag, along with the 7-bit address of our target device plus a write bit.. In our case, RTC had
a physical address of 0x68, while the accelerometer had a physical address of 0x53. Wire.write(data)
would send a byte of data to the device after beginning transmission, while Wire.requestFrom(addr, bytes)
reads a user-defined number of bytes from the device with the given physical address. Finally,
Wire.endTransmission() releases the I2C bus.

For both the RTC and accelerometer, we used I2C in order to initialize the operation of the
device, and read the current time/orientation. Additionally, for the accelerometer, we enabled interrupts by
setting an activity threshold, and enabling the INT1 pin to be active-HIGH upon interrupt. To clear an
interrupt, we read from the INT_SOURCE pin. This interrupt would be disabled while transitioning states
to prevent additional interrupts being generated, and re-enabled once the device starts to track the new
state. The registers and values for these operations were given by the respective device’s datasheets [4][5].

Finite State Machine:
We use Finite State Machine structure to model the dynamic behavior for Hour Cache. There are

2 microcontroller states parallel with 6 functionality states, as shown on figure 3. The interrupt on
accelerometer and timer act as a trigger to switch between controller states; whereas the reading from
orientation during the awake mode toggle the functionality states.
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Figure 3. State pairs for the finite state machine structures that model the dynamic behavior

Optimizations:
As our system is battery powered, power optimization was one of our primary concerns. From our

testing, with WIFI enabled, the ESP-32 consumes about 200mA of current at 3.3V. As a result, with our
680mAh battery, we would theoretically drain the battery within 4 hours of use. In order to allow our
device to last at least an entire day, we utilized the ESP’s built in light sleep mode, which disables many
of the built in features such as Wifi and Bluetooth. Furthermore, it pauses the microprocessor, while
freezing the memory. We would put this ESP to sleep while it’s keeping track of a state, and only wake
the ESP when states are changing, to log the elapsed time in the memory, and send the data over Wifi. As
a result, in this light sleep mode, the ESP consumes around 1mA of current, which allows for a theoretical
600+ hour runtime on one charge.

In order to further reduce the time spent fully awake, we implemented some high-level
optimizations to minimize the time for the main loop. The majority of our code is inline, with minimal
subroutine calling as to reduce overhead.

Programming Design Patterns
Most functional code (other than initial setup) is located inside the main loop. The

microcontroller wakes up when the accelerometer detects activity, and performs one iteration of the main
loop, and immediately falls back to light sleep. This drastically reduces the overhead compared to using
an interrupt subroutine, since resuming program execution from sleep doesn’t require saving additional
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registers. This choice of polling is also appropriate since the microcontroller is not executing anything
else other than the polling requests.

When storing the state variables, we choose to store each state of the 6 states in separate array
elements, and whenever a new state enters, it will be appended under the corresponding array. This
implementation allows us to quickly compute the total elapsed time that the user is in a given state.
Compared to an alternative implementation where we store an array of all states and record the start and
end time of each state, this implementation allows us to save computation time at the expense of memory.
When total time a user is under a state is required, we only need to get the total time under the
corresponding state array, instead of traversing the entire array of states and calculate the elapsed time.
This design choice is motivated by the objective that we want to minimize power consumption and make
our microcontroller work for longer hours without charging. Since the microcontroller memory is
relatively abundant, we use additional memory to reduce additional computation, and in turn reduce CPU
cycles and power consumption.

Embedded firmware design and user interaction

Figure 4. Embedded firmware design

The user interacts with the HourCache by moving the device to another face which triggers the
awake interrupt. Once awake, the device disables and clears the interrupts and calls a function to calculate
which state the user has updated to and gets the time from a real-time clock module. The state and time
are added to the state array. The current data on total time elapsed for each state is then uploaded onto the
server which the user can view. The interrupts are enabled and the device goes into a light sleep once
again and waits for the next state change.

Physical Testing
During our physical testing, we looked at functionality and performance. Firstly, the

accelerometer interrupts would often trigger multiple times during one state change. As a result, we
disabled interrupts in our main loop, added a delay, before enabling the interrupts, which minimized this
issue. However, there would still be some situations, if the cube was rotated too slowly, that two interrupts
would trigger. In terms of performance, we measured the current draw using a USB digital volt/ammeter,
and powering the device over usb. During active operation, the device drew around 200mAh, which was
reduced to around 1mAh during sleep. The state estimation was perfectly accurate, recording the correct
state each time.
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Future Improvements
Although we currently communicate the information to the user through wifi, ideally, the user

would be able to log onto a hosted web application and access their information at any time if HourCache
would be put into production. The web application would have an ergonomic user interface. The server
being hosted externally from the user’s own wifi would allow them to be able to access their information
even without being connected to the same network as the HourCache.

Another alternative would be through a mobile application where the user can access the app
easier through just a click on their phone screen.

In terms of coding optimization, it was mentioned previously that we store each state under its
own corresponding array, and use an additional 2 long variables to record the start and end time for each
state. Since the user isn’t likely to be in the same state for an extremely long time, we could further
optimize memory usage by using less bytes to store the time. By directly using bitwise operations, the
time in seconds that can be stored in 16 bits is equivalent to 18.2 hours, which is enough for our purposes.
Reducing time storage from a 64 bit long to a 16 bit number will drastically reduce memory, and also
using bitwise operations to calculate the elapsed time also saves CPU cycles.

Another improvement that can be done with the interrupts is to make use of the “inactivity”
accelerometer interrupt, instead of using the delay. That way, we could keep the device awake until the
accelerometer detects no activity, at which point we record the new state and send the device back to
sleep. This way, we don’t need a set delay for the interrupt that may be keeping the device awake longer
than needed.

Finally, adding a physical on-off switch would allow the user to turn the device off without
having to disassemble the device and manually disconnect the battery.

Restrictions due to Covid
Due to COVID-19, this project was done remotely, which provided some constraints on our

design. As we only had one physical device to test on, our code had to be broken down into different
modules, so that each person could implement and test their code separately. As a result, some additional
sub-functions are included, such as getstate() and gettime(), which could be further optimized
by including their operations inline to the main loop. Furthermore, we were limited in our selection of
microcontrollers. The only one we could find that had a charging circuit built in also included a screen,
which we did not use. In the future, costs could be reduced by selecting a microcontroller without a
screen.

Conclusion
Living amid an information-saturated world, being bombarded with notifications, messages, and

headlines, it is hard to find focus and even harder staying at home without peers to motivate you. The
value of effective productivity tools is priceless as this leaves more time for self-care. HourCache
provides a simple yet effective framework for time management through prolonged use. It allows users to
work towards their own time management goals through personalized data and can be rewarding when
there is an improvement in the data overall.

Video Demo:
Please refer to https://github.com/yAya-yns/HourCache/blob/main/demo_video.mp4

8

https://github.com/yAya-yns/HourCache/blob/main/demo_video.mp4


Reference:

[1] : https://github.com/yAya-yns/HourCache/blob/main/Hour_Cache-Project_Proposal.pdf
[2] : https://www.sparkfun.com/products/13907
[3] : https://store.arduino.cc/usa/mkr-wifi-1010
[4] : https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL345.pdf
[5] : https://datasheets.maximintegrated.com/en/ds/DS3231-DS3231S.pdf

9

https://github.com/yAya-yns/HourCache/blob/main/Hour_Cache-Project_Proposal.pdf
https://www.sparkfun.com/products/13907
https://store.arduino.cc/usa/mkr-wifi-1010
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL345.pdf
https://datasheets.maximintegrated.com/en/ds/DS3231-DS3231S.pdf

