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Abstract

Within the field of autonomous driving, thermal imaging has recently been utilized within a number of
ADAS pipelines. However, due to limitations with the development of thermal technology, resolution
of thermal images remains relatively small. Furthermore, large resolution thermal cameras have
become expensive. Hence, we propose the use of techniques for the generative upsampling of RGB
images in the context of ADAS Thermal image upsampling. The main motivation for this approach is
to allow users to purchase cheaper low-resolution thermal cameras then up-sample their output for
detection tasks. Our upsampling approach compares different methods including: Residual Encoder-
Decoder Network and Super Resolution ResNet to create a baseline. Finally, Pix2Pix Conditional
Adversarial Network will be utilized in two ways to take the low resolution images as input and
generate high resolution output. We augment the UNet variant as well as ResNet to compare to the
deterministic SRResNet. We will evaluate which approach produces better results empirically and
through the use of a thermal detection model trained on the FLIR Dataset images.

1 Introduction

Within the field autonomous driving there is a large impor-
tance in designing multi-redundant systems to ensure the
limitations of different sensor modalities are addressed.
Thermal imaging has seen great success in aerospace
and defence applications and is more recently seeing ap-
plications for ADAS through thermal camera vendors
such as Telodyne FLIR. The primary motivation for the
use of thermal image based perception is for use within
anti-glare and night time systems. Thermal images do
not suffer from image quality issues with glare and can
be utilized to conduct course object detection. The ma-
jor limitation however is that modern thermal imaging
sensors are relatively low resolution. ADAS level ther-
mal cameras have resolutions of 640x512 and can be
extremely expensive. The goal for this work is to develop
a generative model (or some method) which is able to re-
liably upscale low-resolution thermal images to the same
resolution as that utilized for Autonomous Driving. The
overall goal is to develop a model which gains a strong
notion of how to upscale low-resolution thermal images
of driving scenes (note that driving scenes are a prior here,
allowing this model to be more feasible) to make thermal
technology more accessible to autonomous driving. The
remainder of this document will outline the related work
pertaining to general image upscaling and our approach
and experiments with our upsampling networks.

2 Related work

There are many works regarding the common task of im-
age up-scaling and super resolution (SR). Often we see
the use of auto-encoders to perform SR tasks. Various
approaches include deep convolutional auto-encoders [/1]
and architecture such as RedNet [2]], while more genera-
tive architecture exists as well in variational auto-decoder
[3] and Super Resolution General Adversarial Networks
(SRGAN) [4]. The image SR task has only recently been
explored in the thermal image space as [5], though G.
Batchuluun et al. propose methods using 3-channel ther-
mal images and GANSs.

3 Methods and Algorithms

3.1 Baseline Networks:
3.1.1 Residual Encoder-Decoder Network

Image restoration such as de-noising and super-resolution
can be done using a deep fully convolutional encoding-
decoding architecture that learns mappings from cor-
rupted images to the original ones. The method is termed
as "RedNet" - very deep Residual Encoder-Decoder Net-
works. The convolutional layers are used as feature ex-
tractors that eliminate noise and capture abstract features
of the image. The deconvolutional layers are used to
recover image details that may be previously missing.
A skip-layer technique is used to address the vanishing
gradient problem and pass details between layers that are



beneficial in recovering the original image [2]. While
training the model, the epoch model with the best valida-
tion accuracy was saved.

3.1.2 Super Resolution ResNet

SRResNet is a 16 ResNetBlock network which utilizes a
MSE and VGG loss to generate up sampled images given
target and input pairs. This model does not leverage a
discriminator to calculate loss[6]]. The implementation
used can be found here[l]

3.2 Pix2Pix

Pix2Pix uses architecture based on conditional genera-
tive adversarial networks which learn a mapping from an
observed input image with added noise to some output.
The goal, as with other GANSs, is to train a generator to
produce output images that are indistinguishable from
“real” input images to the adversarially trained discrim-
inator. Within the original Pix2Pix paper, the authors
utilze two generator architectures. The first is a ResNet
backbone using either 6 or 9 ResNetBlocks. The second
is a Unet backbone supporting images with dimensions
of multiples of 128 or 256 pixels in width and height
(due to channel concatenation skip connections). For our
implementation we augment the Unet 128 variant through
the addition of a visual attention laye1E| (see Algorithm
[TI) within the innermost layer of the generator. The Unet
variant utilizes output volume concatenation based skip
connections such that output of layer ¢ is provided as an
additional channel to the input of layer n — . We also
explore the ResNet 6 block variant of Pix2Pix in order
to provide insight on the effect of the discriminator to an
analogous ResNet based network (i.e. SRResNet). This
generator only has skip connections between adjacent
layers. The discriminator for both layers is a patchGAN
discriminator which produces an output prediction map (1
for real, O for fake) for regions of the input image. We do
not preprocess the images for two reasons, first, the entire
image provides good relational information for elements
within the driving scene. Second, we are still able to train
with a batchsize of 12 and 24 for the ResNet and Unet
models respectively. For both networks we utilize the
Adam Optimizer along side a Least Squares (LS) GAN
loss to improve training stability [7].

Algorithm 1 SelfAttentionBlock

X :=input feature maps

¢ := channels of X

Q: = Conv2d(in=c, out=c//8, kernel=1)
K: = Conv2d(in=c, out=c//8, kernel=1)
V: = Conv2d(in=c, out=c, kernel=1)

~: = additive attention weight
e=QKT'

a =Softmax(e)

return ya'V + X

> dot product attention

4 Experiments and Results

4.1 RedNet Image Restoration

RedNet10 RedNet20 RedNet30
Batch 32 0.022 0.0219 0.0217
Batch 64 0.0244 0.0229 0.0228
Batch 128 0.0262 0.0237 0.0237
Batch 256 0.0305 0.0245 N/A

Table 1: Validation results

3 different models were trained for 30 epochs for the Red-
Net architecture on the FLIR dataset: 10 layers, 20 layers,
and 30 layers El The model with 30 layers preformed the
best with a final training loss of 0.0253 and a validation
loss of 0.0217.
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Figure 1: RedNet30 highest(99.9997) and low-
est(99.9966) accuracy with MSE loss. Input, model out-
put, and ground truth respectively.

Figure [I] shows the highest and lowest accuracy output
by RedNet30 during testing. As seen in the figures, the
model’s up sampling results in a smoothed and fuzzy
version of the input. This is due to using Mean Squared
Error (MSE) loss:

N
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Given a collection of N training sample pairs X;,Y;,
where X is a corrupted image and Y; is the ground truth.
Using this loss penalizes larger errors of a pixel from
its ground truth which results in the model favouring
smoother and blurrier pictures. Further examples are

available in[A.T.11

!'This implementation expands a 120x160 image to 512x640 https://github.com/Martin0OxFF/pytorch-SRResNet-thermal
2trainable implementation can be found at https://github.com/MartinOxFF/pytorch-CycleGAN-and-pix2pix-thermal
3Training and testing code can be found at https://github.com/mingshi1214/RedNet


https://github.com/Martin0xFF/pytorch-SRResNet-thermal
https://github.com/Martin0xFF/pytorch-CycleGAN-and-pix2pix-thermal
https://github.com/mingshi1214/RedNet
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Figure 2: RedNet30 highest (99.9997) and lowest
(99.9965) accuracy with L1 loss. Input, model output,
and ground truth respectively.

When training with L1 loss instead, the images are less
smooth and more geometric as can be seen in Figure 2]
but have a higher loss in training and testing. Please re-
fer to[A-2.1) and [A:2.72] for training losses. Viewing the
results qualitatively, the MSE loss training results yielded
pictures that more resembles the ground truth images.
Additional images can be viewed at[A1.2}

4.2 Super Resolution ResNet
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Figure 3: Pre-trained SRResNet highest (99.9986) and
lowest (99.9850) accuracy. Input, model output, and
ground truth respectively.

Initial experiments were made with the pre-trained
weights from ImageNet [8]. Figure [3|show the best and
worst test outputs using the pre-trained weights (99.9986
and 99.9850 respectively). Using the pre-trained weights
produces more textures than in the ground truth image.
This may be due to the difference in the training data
used. ImageNet provides RGB images whereas FLIR is
greyscale. The down-sampling techniques chosen were
also different. The pre-trained weights were trained using
inputs that were down-sampled using bi-cubic interpola-
tion whereas the down-sampled imaged from the FLIR
dataset used nearest neighbour down-sampling. Addi-
tional images can be viewed in[A1.3]

After training the SRResNet on domain specific data, an
upscaled version of the test set (from test inputs) was
produced. The mean and standard deviation between the
ground truth test set and the upsampled test input can be
seen within Table [2] along side other models. Notably,
we see that the RedNet30 produces the smallest MSE
followed by SRResNet and Bi-cubic. With this metric the
performance between RedNet30 and SRResNet appears
similar with RedNet doing slightly better. The difference
in performance between Bi-cubic and the generated meth-
ods is clear however. Interestingly, the standard deviation
of the Pix2Pix Unet + Attention (P2P U+A) model is
much lower than all other models. A large MSE for the
generated models is logical; during training an L1 loss is
used and Pixel difference MSE isn’t used directly.

Model output can be seen within Figure ] The smallest
loss result in Figure[]illustrates a better SRResNet recon-
struction. The scene for this case is relatively simple (few
cars or other higher frequency image features) and the
model output in this case appears to be blurred. The per-
formance of the model here is very similar to RedNet30.
In the case of largest loss, the scene is a bit more com-
plicated particularly due to the sudden harsh variation in
temperature of the road and high frequency features in
the distance (the tree and foliage). These results differ
from the results presented within Figure[3]as it seems that
RGB trained SRResNet dramatically changes the contrast
of the image in an attempt to improve the output quality.

Model MSE stdev
RedNet30 | 0.0327 | 0.0105
SRResNet | 0.0334 | 0.0103
Bi-cubic | 0.0380 | 0.0111
P2P U+A | 0.0542 | 0.0062
P2P6R | 0.0668 | 0.0143
Table 2: Average Per Image Pixel MSE between Model

output and ground truth
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Figure 4: SRResNet samples with largest loss (0.026) and
smallest loss (0.0009). Input, model output, and ground
truth respectively.



4.3 Pix2Pix 6 Layer ResNet

Figure 5: Pix2Pix ResNet6 - Notice the brush stroke like
grouping of pixels within the model output

Within Figure [5] we see a quintessential sample of the
model output. Here, it seems that the ResNet based gener-
ator tends to group collections of pixels together. This can
be clearly seen within the contour of the car door within
the intersection. It seems that the model has learned to
produce a paint stroke like texture on output images. This
may be due to the grouped nature of the patchGAN dis-
criminator. Since the skip connections of the ResNet are
strictly to adjacent layers, there will be some necessary
combination of features producing the output.

4.4 Pix2Pix Unet+Attention
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Figure 6: Pix2Pix Unet+Attention - Here we see better
reconstruction particularly of the car, however the pedes-
trian’s bicycle is lost.

Within Figure[6] we see that the image reconstruction is
better than that of the ResNet based generator. In par-
ticular, the Unet+Attention generator does a better job
of reconstructing the texture of the car within the scene,
despite its distance to the thermal camera. However, it
also seems that the pedestrian’s bike was removed by the
network, as it did not provide a strong enough signal and
was presumed to be noise. There are other cases when
these GAN based models either add features to a scene
or remove features to a scene.

4.5 Downstream performance

Trained on | M mAP | L mAP | X mAP

P2P U+A 0.211 0.217 0.212
RedNet 0.210 0.214 0.213
Bi-cubic 0.182 0.185 0.182

Table 3: Downstream performance of upsampling mod-
ules - all classes mAP@0.5:0.95

Table [3] provides a summary of three different YOLO
Models (M, L, X) trained on Pix2Pix Unet+Attention

(P2P U+A), RedNet, or Bi-cubic interpolated samples.
From the Table, we see that the use of a learned method
provides immediate improvements in accuracy, while the
use of a GAN method appears to provide marginally bet-
ter performance.

5 Conclusion

We can see empirically the base models perform well
in the super resolution recovery task. It is evident that
information is lost in downscaling, and fine detail such as
lettering and road markings are not recovered. Baseline
performance was determined using various loss schemes
on RedNet as well as SRResNet. RedNet with MSE
loss produces smoothed fuzzy results with some reten-
tion of pixelization, whereas the L1 loss models result
in less smooth, geometric images. Qualitatively, our SR-
ResNet model outputs are worse than the results from
RedNet, likely due to the pretraining of SRResNet being
performed on visible light imaging (rather than thermal
as present in the FLIR dataset). The discrepancy in per-
formance highlights a novel characteristic of the thermal
upscaling problem as we cannot simply apply visible
light RGB trained models to the task. The generative
models, Pix2Pix 6 Layer ResNet and Pix2Pix UNet with
attention produce reconstructions that more closely re-
semble the high frequency ground truth images. The
detail in both Pix2Pix outputs appear visually more sim-
ilar to the ground truth than the RedNet outputs. The
Pix2Pix UNet+Attention performs better than the ResNet
based model likely due to the UNet architecture perform-
ing well in image segmentation. In the object detection
task, it is evident that the generative method Pix2Pix
(UNet+Attention) produces the best results, though only
marginally superior to the other learned method imple-
mented in RedNet. An important improvement to evalu-
ating the quality and performance of the model outputs
would be to derive a different quantifiable method to com-
pare models than using MSE. As can be seen throughout
Section 4. Experiments and Results, there is very little dif-
ference between the MSE values of the models explored.
This is due to having very minimal difference between the
pixel values of the grey-scale output image and the grey-
scale ground truth image. For future exploration, Pix2Pix
UNet+Attention provides promising performance and as
such it would be interesting to see the results of additional
attention blocks. Other methods that may be expanded
upon in the future for the thermal image super resolution
task include Variational Autodecoder reconstruction and
CycleGAN super resolution as originally proposed and
prototyped with.
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Appendix: Mingshi, Connor, Martin
A Appendix

A.1 Samples of Baseline Outputs

To view the full images, please navigate to this folder:
https://drive.google.com/drive/folders/1tZKerfCfPZqfDa9mEiXuqf5SEc_d8vmyH?usp=sharing

A.1.1 MSE training loss model outputs (RedNet30 for 32 batch size)



 https://drive.google.com/drive/folders/1tZKerfCfPZqfDa9mEiXuqf5Ec_d8vmyH?usp=sharing

A.1.2 L1 training loss model outputs (RedNet30 for 32 batch size)




A.1.3 Pretrained weights from SRResNet results on FLIR Dataset




A.1.4 Trained weights of SRResNet on the FLIR dataset results
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A.2.2 L1 training loss for RedNet. Loss over epochs
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A.3.1 Cycle GAN RESNet 9 examples over epochs
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A.3.2 Pix2pix RESNet with Attention examples over epochs
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A.3.3 Pix2pix RESNet without Attention examples over epochs




A.3.4 Pix2pix Unet without Attention examples over epochs




A.3.5 Pix2pix Unet with Attention using Least Squares Generator Loss examples over epochs (128 pixels)
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A.3.6 Pix2pix Unet without Attention using Least Squares Generator Loss examples over epochs (256 pixels)
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